# The Crystal Structure of a Symmetrical 12-Oxa[4.4.3]propella-2,4,7,9-tetraene Bis-irontricarbonyl, $\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{O}_{7} \mathrm{Fe}_{2}{ }^{*}$ 

By Karin Bjåmer Birnbaum $\dagger$<br>Biochemistry Laboratory, National Research Council of Canada, Ottawa, Canada

(Received 31 December 1970)


#### Abstract

This symmetrical 12-oxa[4.4.3]propella-2,4,7,9-tetraene bis-irontricarbonyl complex, $\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{O}_{7} \mathrm{Fe}_{2}$, m.p. $200-204^{\circ} \mathrm{C}$, crystallizes in the monoclinic space group $C 2 / c$ with eight half-molecules in a unit cell of dimensions $a=20.791$ (3), $b=7 \cdot 173$ (1), $c=12 \cdot 625$ (2) $\AA ; \beta=111.42$ (2) ${ }^{\circ}$. The densities are: $D_{x}=1.713$ $\mathrm{g} . \mathrm{cm}^{-3}, D_{m}=1.709 \mathrm{~g} . \mathrm{cm}^{-3}$. The structure was determined by the heavy-atom method from data collected at room temperature on a four-circle diffractometer using the $\theta / 2 \theta$ scan technique. It was refined by the least-squares method to $R=4.5 \%$ for 1323 observed reflexions. Each iron atom is complexed to a butadiene group of four planar carbon atoms of the ligand with the following $\mathrm{C}-\mathrm{C}$ bond lengths, $1 \cdot 413$ (6), $1 \cdot 401$ (6), $1 \cdot 422$ (6) $\AA$.


## Introduction

Treatment of the tetraenic ether (I) with diironnonacarbonyl afforded five organometallic complexes (Altman, Cohen, Maymon, Petersen, Reshef \& Ginsburg, 1969), one of them with m.p. $200-204^{\circ} \mathrm{C}$. Its nuclear magnetic resonance spectrum suggested that it was a symmetrical bis-irontricarbonyl derivative of structure (II) or (III). This X-ray analysis was carried out in order to resolve this ambiguity. Its results, which showed the structure to be (III) or more clearly shown in (IV) and Fig. 2, were reported in a preliminary communication (Birnbaum, Altman, Maymon \& Ginsburg, 1970). In this structure as well as in others in which an irontricarbonyl group is complexed to a cyclic substituted butadiene (e.g. see Churchill \& Mason, 1967a) the ring moiety attached to the outer atoms of the diene system is always bent away from the irontricarbonyl group. The conformation of the sixmembered rings of (II) is therefore likely to be as shown in (V).


[^0]
## Crystal data

Symmetrical 12-oxa[4.4.3]propella-2,4,7,9-tetraene bisirontricarbonyl, $\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{O}_{7} \mathrm{Fe}_{2}$, F.W. $451 \cdot 99$, m.p. $200-204^{\circ} \mathrm{C}$
Monoclinic:
$a=20.791$ (3), $b=7.173$ (1), $c=12 \cdot 625$ (2) $\AA$;
$\beta=111.42$ (2) ${ }^{\circ}$.
$V=1752.8 \AA^{3}\left[\mathrm{Cu} \mathrm{K} \alpha_{1} \quad(\lambda=1.54051 \AA)\right.$ and $\mathrm{Cu} K \alpha_{2}$
( $\lambda=1.54433 \AA$ ) radiations were used]. $D_{m}=1.709$ g. $\mathrm{cm}^{-3}$ (by flotation in aqueous potassium iodide), $D_{x}=1.713{\mathrm{~g} . \mathrm{cm}^{-3},}=4 . F(000)=912$.
Systematic absences:
$h k l$ absent when $h+k$ is odd and $h 0 l$ absent when $l$ is odd. Possible space groups $C c$ and $C 2 / c$. $C 2 / c$ determined by refinement. Linear absorption coefficient $\mu($ Mo $K \alpha)=17.3 \mathrm{~cm}^{-1}$.

## Experimental

The crystals were yellow, long prismatic and one, cut to size $0.19 \times 0.24 \times 0.31 \mathrm{~mm}$, was mounted along the $b$ (elongated) axis. The cell dimensions and the intensities were measured with an automated four-circle diffractometer (Picker) equipped with a scintillation counter and a pulse-height analyser. Ni-filtered $\mathrm{Cu} K \alpha$ radiation was used to measure the cell dimensions. Their values are weighted averages obtained from measurements of axial reflexions and the e.s.d.'s were derived from r.m.s. deviations. The intensity data were obtained by using Nb -filtered Mo $K \alpha$ radiation and the moving-crystal moving-counter $(\theta / 2 \theta)$ scan technique. A $2.0^{\circ}$ scan was used for reflexions with $2 \theta \leq 35^{\circ}$ and a $2 \cdot 4^{\circ}$ scan for those with $35^{\circ}<2 \theta \leq 55^{\circ}$. The scans were symmetrical and the background was measured for 20 sec on each side of the scan. When the count rate exceeded 20,000 c.p.s. the current was lowered and, when neces-
sary, brass attenuation filters were used. A standard reflexion, 008, was measured at intervals of approximately 30 reflexions and used to scale the data. There was no appreciable change in its intensity during the collection of data. Of the 2008 independent reflexions with $2 \theta \leq 55^{\circ}, 1325(66 \%)$ were observed above threshold value. The threshold was taken as a net count of 150 or $10 \%$ of the background, whichever was higher. The intensities were corrected for Lorentz and polarization factors but no absorption correction was applied, the minimum and maximum transmission coefficients $(\mu t)$ being 0.33 and 0.54 respectively.

## Structure determination

The structure was solved by the heavy-atom method. The statistics of the normalized structure factors (Table 1) show values which are intermediate between those expected for non-centrosymmetric and centrosymmetric space groups. Therefore, one could not distinguish between the space groups $C c$ and $C 2 / c$. However, the latter was assumed and at the end of the refinement this assumption proved to be correct.

Table 1. Statistics of the E's

|  |  | Theoretical values |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | This structure | Centrosymmetric | Non-centrosymmetric |
|  | $\langle \| E\rangle$ | 0.825 | $0 \cdot 798$ | $0 \cdot 886$ |
|  | $\left.\left.\langle \| E\right\|^{2}\right\rangle$ | 0.998 | 1.000 | 1.000 |
|  | $\langle \| E^{2}-1\| \rangle$ | 0.920 | 0.968 | 0.736 |
| Reflexions with | $\|E\|<3$ | 0.00\% | 0.3\% | $0.01 \%$ |
|  | $\|E\|<2$ | 3.8 | $5 \cdot 0$ | $1 \cdot 8$ |
|  | $\|E\|<1$ | $34 \cdot 5$ | $32 \cdot 0$ | 37.0 |

In $C 2 / c$ a diad axis passes through the molecule and thus the asymmetric unit contains half a molecule. The position of the iron atom ( $0 \cdot 1395,0 \cdot 2065,0.2500$ ) was determined from a sharpened Patterson map. A Fourier synthesis based on the phases of the iron atom was calculated and all the non-hydrogen atoms were located from it. There were no spurious peaks as high as the ones selected for the molecule. Inclusion of the carbon and oxygen atoms in the calculation of structure factors lowered $R$ from 36 to $19 \cdot 6 \%$. The scale factor and isotropic thermal parameter ( $B=3 \cdot 41 \AA^{2}$ ) used in these calculations were derived from a Wilson plot.

## Structure refinement

Coordinates, thermal parameters, and the scale factor were refined by the block-diagonal approximation of the least-squares method, minimizing the expression $\sum w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2}$. The matrices used were $9 \times 9$ for coordinates and thermal parameters ( $4 \times 4$ for isotropic thermal motion) of each atom. The scale factor and the overall isotropic thermal parameter were refined by a
$2 \times 2$ matrix. A shift factor of 0.8 was used throughout the refinement.

Anomalous scattering corrections ( $\Delta f^{\prime}=0 \cdot 37, \Delta f^{\prime \prime}=$ 0.92 ) were applied to the scattering curve of iron. The hydrogen atoms were located on peaks varying in height from 0.42 to 0.70 e. $\AA^{-3}$ in a difference Fourier synthesis, and subsequently refined with isotropic thermal parameters. All other atoms were refined with anisotropic thermal parameters. The following weighting scheme, chosen so as to reflect the trends in $|\Delta F|$ 's, was introduced at this stage:
$\quad V w=V w_{1} \cdot V w_{2}$
where $\quad V w_{1}=\left(\left|F_{0}\right| / p_{1}\right)^{p_{2}}$
when $\left|F_{F}\right| \leq p_{1}$
$V w_{1}=\left(p_{1}| | F_{o} \mid\right)^{1 / 2} \quad$ when $\left|F_{o}\right|>p_{1}$
$\begin{array}{ll}V w_{2}=\left(\sin ^{2} \theta / p_{3}\right)^{1 / 2} & \text { when } \sin ^{2} \theta \leq p_{3} \\ & \text { when } \sin ^{2} \theta>p_{3}\end{array}$
and

$$
v_{2}=1 \quad \text { when } \sin ^{2} \theta>p_{3} .
$$

The parameters were adjusted during the refinement in order to make $w(\Delta F)^{2}$ as linear as possible with respect to $\left|F_{o}\right|$ and $\sin ^{2} \theta$. The final values were $p_{1}=$ $28.0, p_{2}=1.10$ and $p_{3}=0.050$.
The refinement converged to an $R$ value of $4.54 \%$ ( $\left.R^{\prime}=\left(\sum w(\Delta F)^{2} / \sum w F_{o}^{2}\right)^{1 / 2}=4.96 \%\right)$ for 1323 observed reflexions; two reflexions were excluded due to poor agreement between observed and calculated structure factors. After the last cycle of refinement all parameter shifts were less than $0 \cdot 1 \sigma$.
The final difference Fourier map showed no significant features except in the vicinity of the Fe atom (Fig. 1). In addition to the peaks and valleys shown in


Fig. 1. Section of the final difference Fourier map parallel to (010). The $y$ coordinates of the atoms are marked. Contours are drawn at intervals of $0.1 \mathrm{e} . \AA^{-3}$ and start at $\pm 0.3 \mathrm{e} . \AA^{-3}$. The e.s.d of this map is $0 \cdot 11$ e. $\AA^{-3}$ (Cruickshank, 1949).

Table 2. Final fractional coordinates and thermal parameters $\left(\AA^{2}\right)$
(a) Non-hydrogen atoms

The thermal-vibration parameters are expressed as

$$
\exp \left[-2 \pi^{2}\left(U^{11} h^{2} a^{* 2}+U^{22} k^{2} b^{* 2}+U^{33} l^{2} c^{* 2}+2 U^{23} k l b^{*} c^{*}+2 U^{13} h l a^{*} c^{*}+2 U^{12} h k a^{*} b^{*}\right)\right]
$$

Positional parameters are multiplied by $10^{4}$ and thermal parameters by $10^{3}$.

|  | $x$ | $y$ | $z$ | $U^{11}$ | $U^{22}$ | $U^{33}$ | $2 U^{23}$ | $2 U^{13}$ | $2 U^{12}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Fe | $1383 \cdot 4$ (3) | 2088.1 (9) | $2468 \cdot 2$ (5) | $34 \cdot 2$ (2) | 41.9 (3) | $43 \cdot 7$ (3) | -18.4 (7) | $24 \cdot 2$ (5) | $3 \cdot 7$ (6) |
| C(1) | 340 (2) | 1846 (6) | 1389 (3) | 37 (2) | 45 (3) | 33 (2) | -9(4) | 18 (3) | -3 (4) |
| C(2) | 623 (2) | 118 (6) | 1877 (4) | 41 (2) | 34 (2) | 48 (3) | -23 (4) | 20 (4) | 1 (4) |
| C(3) | 894 (2) | 90 (6) | 3068 (4) | 36 (2) | 42 (3) | 47 (3) | 8 (4) | 16 (4) | 8 (4) |
| C(4) | 840 (2) | 1819 (6) | 3581 (3) | 32 (2) | 45 (3) | 34 (2) | -8 (4) | 10 (3) | -3 (4) |
| C(5) | 152 (2) | 2853 (6) | 3158 (3) | 38 (2) | 31 (2) | 34 (2) | -7 (4) | 20 (3) | -3(4) |
| C(6) | 223 (2) | 4917 (7) | 3479 (5) | 43 (2) | 42 (3) | 67 (3) | -29 (4) | 52 (4) | -13 (4) |
| C(7) | 2205 (2) | 1512 (8) | 3535 (4) | 37 (2) | 73 (3) | 51 (3) | -40 (5) | 27 (4) | 2 (4) |
| C(8) | 1692 (3) | 1704 (8) | 1340 (4) | 46 (3) | 72 (4) | 54 (3) | -31(5) | 25 (4) | -5 (5) |
| C(9) | 1476 (2) | 4572 (7) | 2541 (5) | 42 (3) | 50 (3) | 84 (4) | -19 (6) | 65 (5) | -15 (4) |
| $\mathrm{O}(1)$ | 0 (0) | 5964 (7) | 2500 (0) | 157 (7) | 29 (3) | 92 (5) | 0 (0) | 74 (9) | 0 (0) |
| O(2) | 2721 (2) | 1119 (8) | 4210 (4) | 45 (2) | 122 (4) | 70 (3) | -34(5) | 7 (3) | 34 (4) |
| $\mathrm{O}(3)$ | 1877 (2) | 1466 (9) | 609 (4) | 76 (3) | 158 (5) | 65 (3) | -69 (6) | 74 (4) | -19 (6) |
| $\mathrm{O}(4)$ | 1560 (2) | 6127 (6) | 2590 (5) | 77 (3) | 49 (2) | 178 (5) | -35 (6) | 149 (6) | -31 (4) |

this figure there were peaks above and below the iron atom at distances of $0 \cdot 8-1 \cdot 0 \AA$ from it. These features may possibly be due to the non-sphericity of the iron orbitals as well as to series termination errors.

In order to verify the space group, the structure was also refined in $C c$. Since the parameters were oscillating a shift factor of 0.5 was used. The ratio of observed reflexions to refined parameters is lower in this space group and therefore the hydrogen atoms were not refined but included in fixed positions. The ratio of the two $R^{\prime}$ values is 0.999 and according to Hamilton's (1965) test the originally chosen space group $C 2 / c$ is definitely correct.
The scattering factors of Hanson, Herman, Lea \& Skillman (1964) were used throughout the analysis for carbon and oxygen atoms. The values for neutral iron were obtained from Cromer \& Waber (1965) and Cromer (1965), and those for bonded hydrogen atoms were taken from Stewart, Davidson \& Simpson (1965).

The final coordinates and thermal parameters are listed in Table 2. The listed e.s.d. values were obtained from the inverse of the least-squares matrix. Table 3 shows the observed and calculated structure factors. The unobserved reflexions are marked with an asterisk. They were given the threshold value but were excluded from the least-squares refinement. Inspection of the $F_{o}$ and $F_{c}$ values of strong reflexions did not reveal any extinction effect and no correction was applied.

Table 2 (cont.)
(b) Hydrogen atoms

All values are multiplied by $10^{3}$

|  | $x$ | $y$ | $z$ | $U_{\text {iso }}$ |
| :--- | ---: | :---: | :---: | :---: |
|  | $x$ | $y(11)$ | $22(3)$ | $201(7)$ |
| $\mathbf{H}(11)$ | $70(2)$ | $-92(6)$ | $56(4)$ | $46(12)$ |
| $\mathrm{H}(21)$ | $16(4)$ | $37(11)$ |  |  |
| $\mathrm{H}(31)$ | $167(7)$ | $350(4)$ | $48(13)$ |  |
| $\mathrm{H}(41)$ | $109(3)$ | $196(8)$ | $441(5)$ | $59(15)$ |
| $\mathrm{H}(61)$ | $-6(4)$ | $531(10)$ | $392(6)$ | $84(20)$ |
| $\mathbf{H}(62)$ | $68(3)$ | $520(8)$ | $388(4)$ | $53(14)$ |

## Thermal-vibration analysis

The thermal vibration of the entire complex as well as of the ligand and the irontricarbonyl group, separately, were analysed in terms of the rigid-body tensors of translation (T), libration (L) and screw motion (S) (Schomaker \& Trueblood, 1968). However, only the vibration of the irontricarbonyl group fits this model, the value of $\sigma U_{\text {calc }}=\left[\Sigma\left(\Delta U^{i j}\right)^{2} /(n-s)\right]^{1 / 2}$ being $0 \cdot 0059 \AA^{2}$ (compared to 0.0118 and $0.0110 \AA^{2}$ for the entire molecule and the ligand respectively) and $\left\langle\sigma U_{\text {obs }}^{i j}\right\rangle$ being $0.0034 \AA^{2}$. The positional parameters of the irontricarbonyl group were corrected for the libration motion and the resulting bond lengths are shown in parentheses in Fig. 3. There was no appreciable change in the bond angles and these are therefore not shown.


Fig. 2. Stereoscopic view of the complex. The thermal ellipsoids enclose $50 \%$ probability.

Table 3．Observed and calculated structure factors
All $F$ values are multiplied by 10 ．Unobserved reflexions are marked with an asterisk．The $21,3,4$ and $21,3,6$ reflexions were ex－ cluded from the least－squares calculations due to poor agreement between observed and calculated values．
处





为




 Nu， 1







 ニ






Table 3 (cont.)


## Description and discussion of the structure

The structure proved to be (III) rather than (II) and the conformation can be seen in Fig. 2. Most bond lengths and angles are shown in Fig. 3. Other distances and angles are listed in Tables 4 and 5, and the weighted mean planes in Table 6. All the given e.s.d.'s were derived from the block-diagonal approximation of the least squares.

Table 4. Distances and angles involving bonding between the iron atom and the ligand
(a) Distances

Their e.s.d.'s are 0.004-0.005 $\AA$.

| $\mathrm{Fe} \cdots \mathrm{C}(2)$ | $2.047 \AA$ | $\mathrm{Fe} \cdots \mathrm{M}(2,3)^{*}$ | $1.928 \AA$ |
| :--- | :--- | :--- | :--- |
| $\mathrm{Fe} \cdots \mathrm{C}(3)$ | 2.055 | $\mathrm{Fe} \cdots \mathrm{M}(1,2)$ | $1 \cdot 952$ |
| $\mathrm{Fe} \cdots \mathrm{C}(1)$ | $2 \cdot 105$ | $\mathrm{Fe} \cdots \mathrm{M}(3,4)$ | 1.957 |
| $\mathrm{Fe} \cdots \mathrm{C}(4)$ | 2.108 |  |  |

$* M$ is the midpoint of the bond between carbon atoms indicated by the numbers.

## (b) Angles

Their e.s.d.'s are $0 \cdot 2-0 \cdot 3^{\circ}$ except those involving hydrogen atoms whose e.s.d.'s are $3^{\circ}$.

|  |  |  |  |
| :--- | :---: | :--- | ---: |
| $\mathrm{C}(1)-\mathrm{Fe}-\mathrm{C}(8)$ | $93 \cdot 3^{\circ}$ | $\mathrm{C}(2)-\mathrm{Fe}-\mathrm{C}(8)$ | $93 \cdot 3^{\circ}$ |
| $\mathrm{C}(4)-\mathrm{Fe}-\mathrm{C}(7)$ | $94 \cdot 2$ | $\mathrm{C}(3)-\mathrm{Fe}-\mathrm{C}(7)$ | $91 \cdot 5$ |
| $\mathrm{C}(1)-\mathrm{Fe}-\mathrm{C}(9)$ | $100 \cdot 5$ | $\mathrm{C}(2)-\mathrm{Fe}-\mathrm{C}(9)$ | $139 \cdot 5$ |
| $\mathrm{C}(4)-\mathrm{Fe}-\mathrm{C}(9)$ | $97 \cdot 6$ | $\mathrm{C}(3)-\mathrm{Fe}-\mathrm{C}(9)$ | 137.2 |
| $\mathrm{C}(1)-\mathrm{Fe}-\mathrm{C}(4)$ | $75 \cdot 4$ | $\mathrm{C}(2)-\mathrm{Fe}-\mathrm{C}(3)$ | $39 \cdot 9$ |
| $\mathrm{C}(1)-\mathrm{Fe}-\mathrm{C}(7)$ | $160 \cdot 0$ | $\mathrm{C}(2)-\mathrm{Fe}-\mathrm{C}(7)$ | $120 \cdot 7$ |
| $\mathrm{C}(4)-\mathrm{Fe}-\mathrm{C}(8)$ | $162 \cdot 6$ | $\mathrm{C}(3)-\mathrm{Fe}-\mathrm{C}(8)$ | $123 \cdot 9$ |
| $\mathrm{C}(1)-\mathrm{Fe}-\mathrm{C}(2)$ | $39 \cdot 8$ | $\mathrm{C}(1)-\mathrm{Fe}-\mathrm{C}(3)$ | $69 \cdot 5$ |
| $\mathrm{C}(3)-\mathrm{Fe}-\mathrm{C}(4)$ | $39 \cdot 9$ | $\mathrm{C}(2)-\mathrm{Fe}-\mathrm{C}(4)$ | $69 \cdot 5$ |
| $\mathrm{Fe}-\mathrm{C}(1)-\mathrm{C}(2)$ | $67 \cdot 9$ | $\mathrm{Fe}-\mathrm{C}(4)-\mathrm{C}(3)$ | $68 \cdot 1$ |
| $\mathrm{Fe}-\mathrm{C}(1)-\mathrm{C}\left(5^{\prime}\right)$ | $113 \cdot 1$ | $\mathrm{Fe}-\mathrm{C}(4)-\mathrm{C}(5)$ | $112 \cdot 6$ |
| $\mathrm{Fe}-\mathrm{C}(1)-\mathrm{H}(11)$ | 119 | $\mathrm{Fe}-\mathrm{C}(4)-\mathrm{H}(4)$ | 120 |
| $\mathrm{Fe}-\mathrm{C}(2)-\mathrm{C}(3)$ | $70 \cdot 4$ | $\mathrm{Fe}-\mathrm{C}(3)-\mathrm{C}(2)$ | $69 \cdot 7$ |
| $\mathrm{Fe}-\mathrm{C}(2)-\mathrm{C}(1)$ | $72 \cdot 3$ | $\mathrm{Fe}-\mathrm{C}(3)-\mathrm{C}(4)$ | $72 \cdot 0$ |
| $\mathrm{Fe}-\mathrm{C}(2)-\mathrm{H}(21)$ | 120 | $\mathrm{Fe}-\mathrm{C}(3)-\mathrm{H}(31)$ | 120 |

Table 5. Molecular dimensions of the ligand involving hydrogen atoms
(a) Bond lengths

Their e.s.d.'s are in the range $0.05-0.08 \AA$.

| $\mathrm{C}(1)-\mathrm{H}(11)$ | $0.98 \AA$ |
| :--- | :--- |
| $\mathrm{C}(2)-\mathrm{H}(21)$ | 0.92 |
| $\mathrm{C}(3)-\mathrm{H}(31)$ | 0.97 |
| $\mathrm{C}(4)-\mathrm{H}(41)$ | 0.99 |
| $\mathrm{C}(6)-\mathrm{H}(61)$ | 1.00 |
| $\mathrm{C}(6)-\mathrm{H}(62)$ | 0.92 |

(b) Bond angles

Their e.s.d.'s are in the range $3-5^{\circ}$.

| $\mathrm{C}\left(5^{\prime}\right)-\mathrm{C}(1)-\mathrm{H}(11)$ | $113^{\circ}$ | $\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{H}(61)$ | $114^{\circ}$ |
| :--- | :--- | :--- | :--- |
| $\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{H}(11)$ | 118 | $\mathrm{O}(1)-\mathrm{C}(6)-\mathrm{H}(61)$ | 106 |
| $\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{H}(21)$ | 127 | $\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{H}(62)$ | 110 |
| $\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{H}(21)$ | 117 | $\mathrm{O}(1)-\mathrm{C}(6)-\mathrm{H}(62)$ | 108 |
| $\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{H}(31)$ | 122 | $\mathrm{H}(61)-\mathrm{C}(6)-\mathrm{H}(62)$ | 110 |
| $\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{H}(31)$ | 123 |  |  |
| $\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{H}(41)$ | 118 |  |  |
| $\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{H}(41)$ | 112 |  |  |

This compound can be classified as a cyclic substituted butadiene complex. The bonding between the iron atom and the butadiene group is not yet fully understood (e.g. see Churchill \& Mason, 1967a; Green, 1968) even though several such structures have been determined by X-ray diffraction (Dickens \& Lipscomb, 1962; Smith \& Dahl, 1962; Dodge, 1964; Bailey \& Mason, 1966; Churchill \& Mason, 1967b; Robson \& Truter, 1968; Paul, Johnson, Paquette, Barrett \& Haluska, 1968; Birch, Fitton, McPartlin \& Mason, 1968; Beddoes, Lindley \& Mills, 1970). The geometry of the butadiene-irontricarbonyl moiety is similar to that observed in previous analyses. However, since the present determination is more accurate than those referred to before, these results may contribute to the understanding of the Fe-ligand bonding of these complexes.

As is usual in these complexes, the conformation of the ligand, or part of it, is dictated by the bonding to the irontricarbonyl groups. The tricyclic ligand has

Table 6. Weighted least-squares planes

Plane 1

| Plane 1 |  |
| :--- | ---: |
|  | $\Delta$ |
| $\mathrm{O}(1)$ | $0.000 \AA$ |
| $\mathrm{C}(5)$ | 0.002 |
| $\mathrm{C}\left(5^{\prime}\right)$ | -0.002 |
| $\mathrm{C}(6)$ | -0.002 |
| $\mathrm{C}\left(6^{\prime}\right)$ | 0.002 |

$$
\begin{gathered}
\text { r.m.s.d. }=0.002 \\
\chi^{2}=0.6
\end{gathered}
$$

Plane 2

| Plane 2 |  |
| :--- | ---: |
|  | $\Delta$ |
| $\mathrm{C}(1)$ | $0.000 \AA$ |
| $\mathrm{C}(2)$ | 0.000 |
| $\mathrm{C}(3)$ | -0.003 |
| $\mathrm{C}(4)$ | 0.001 |
| $\mathrm{H}(21)$ | 0.106 |
| $\mathrm{H}(31)$ | 0.113 |
| $\mathrm{H}(11)^{*}$ | 0.157 |
| $\mathrm{H}(41)^{*}$ | 0.150 |
| $\mathrm{C}(5)^{*}$ | -0.977 |
| $\mathrm{C}\left(5^{\prime}\right)^{*}$ | -0.986 |
| Fe | 1.643 |


|  | Plane 3 |
| :--- | ---: |
|  | $\Delta$ |
| $\mathrm{C}(1)$ | $0.003 \AA$ |
| $\mathrm{C}(4)$ | -0.003 |
| $\mathrm{C}(5)$ | 0.005 |
| $\mathrm{C}\left(5^{\prime}\right)$ | -0.005 |

$$
\begin{gathered}
\text { r.m.s.d. }=0.063 \\
\chi^{2}=8.9
\end{gathered}
$$

Plane 4

|  | Plane 4 |
| :--- | ---: |
|  | $\Delta$ |
| $\mathrm{C}(1)$ | $-0.023 \AA$ |
| $\mathrm{C}(4)$ | 0.022 |
| $\mathrm{C}(7)$ | -0.034 |
| $\mathrm{C}(8)$ | 0.038 |
| $\mathrm{O}(2)^{*}$ | -0.253 |
| $\mathrm{O}(3)^{*}$ | -0.112 |
| $\mathrm{Fe}^{*}$ | 0.278 |
| $\mathrm{C}(9)^{*}$ | 2.067 |
| $\mathrm{O}(4)^{*}$ | 3.191 |
| $\mathrm{M}(2,3)^{*}$ | -1.217 |

$$
\begin{gathered}
\text { r.m.s.d. }=0.030 \\
\chi^{2}=130 \cdot 1
\end{gathered}
$$

Plane 5

|  | $\Delta$ |
| :--- | ---: |
| $\mathrm{C}(7)$ | $0.0 \AA$ |
| $\mathrm{C}(8)$ | 0.0 |
| $\mathrm{C}(9)$ | 0.0 |
| $\mathrm{Fe}{ }^{*}$ | -0.920 |
| $\mathrm{O}(2)^{*}$ | 0.568 |
| $\mathrm{O}(3)^{*}$ | 0.571 |
| $\mathrm{O}(4)^{*}$ | 0.622 |

$$
\begin{gathered}
\text { r.m.s.d. }=0.0 \\
\chi^{2}=0.0
\end{gathered}
$$

* Atoms excluded from the calculation of the plane.

Table 6 (cont.)
Equations of the planes are of the type

$$
h x+k y+l z=m \text { where } x, y, z
$$

are fractional monoclinic coordinates

| Plane | $h(\AA)$ | $k(\AA)$ | $l(\AA)$ | $m(\AA)$ |
| :---: | :---: | :---: | :---: | ---: |
| 1: | 20.791 | 0.000 | -4.764 | -1.190 |
| 2: | 19.980 | 1.994 | -4.525 | 0.419 |
| 3: | 10.603 | 6.169 | -2.375 | 1.167 |
| 4: | 1.206 | 7.159 | 0.015 | 1.387 |
| 5: | 18.712 | 3.127 | -4.091 | 3.151 |

Some dihedral angles between the planes

$$
\begin{array}{cccccc}
\angle 1,2 & \angle 1,3 & \angle 2,3 & \angle 1,4 & \angle 2,4 & \angle 2,5 \\
16 \cdot 1 & 59 \cdot 3 & 43 \cdot 2 & 93 \cdot 3 & 109 \cdot 4 & 9 \cdot 7^{\circ}
\end{array}
$$

local $C_{2 v}$ symmetry. The six-membered cyclohexadiene rings are boat-shaped and thus different from what would have been expected in uncomplexed form. The torsional angles (Fig. 4) demonstrate that the rings are flattened as compared to an ideal cyclohexane boat in which two of the calculated torsional angles are $0^{\circ}$ and four are $\pm 54^{\circ}$ (Bucourt \& Hainaut, 1965). Each iron atom is bonded to a planar 'butadiene'
moiety $[C(1), C(2), C(3), C(4)]$ and the atoms $C(1)$ and $\mathrm{C}(4)$ have a certain amount of $s p^{3}$ character (plane 2 in Table 6). The displacements of $H(11)$ and $H(41)$ from this plane, towards the iron atom, correspond to a bend of $9^{\circ}$. In agreement with this the average of the two bond lengths $C(1)-C\left(5^{\prime}\right)$ and $C(4)-C(5)[1 \cdot 525$ (4) $\AA]$ lies between the values for $\mathrm{C}_{s p 3}-\mathrm{C}_{s p 3}$ and for $\mathrm{C}_{s p 3}-\mathrm{C}_{s p 2}$ bonds $(1.537 \pm 0.005$ and $1.505 \pm 0.005 \AA$, respectively; Sutton, 1965). The three 'butadiene' bonds are equal within experimental error at a $0.1 \%$ significance level and their average length is 1.412 (3) $\AA$, a result which argues in favour of delocalization of electrons. However, there is a slight indication that $\mathrm{C}(2)-\mathrm{C}(3)$ $[1 \cdot 401(6) \AA$ ] is shorter than the two bonds $C(1)-C(2)$ and $\mathrm{C}(3)-\mathrm{C}(4)$ [average length $1 \cdot 418$ (4) $\AA$ ], the $\Delta l / \sigma(\Delta l)$ being $2 \cdot 4$. This indication prevails in most other structures and thus appears to be real.

As usual, the distances from the iron atom to the 'inner' atoms $[C(2)$ and $C(3)]$ are equal and their average, 2.051 (4) $\AA$, is significantly shorter than the average, $2 \cdot 107$ (3) $\AA$, of the two equal $\mathrm{Fe} \cdots \mathrm{C}$ distances to the 'outer' atoms $[C(1)$ and $C(4)]$. Similarly, the distances from Fe to the midpoints of the three bonds


Fig. 3: Bond lengths and angles. The values given in parentheses are corrected for thermal vibration. The e.s.d.'s of bond lengths are $0.006 \AA$ for $\mathrm{C}-\mathrm{C}$ and $\mathrm{C}-\mathrm{O} ; 0.005 \AA$ for $\mathrm{Fe}-\mathrm{C} ; 0.007 \AA$ for $\mathrm{C}=\mathrm{O}$ and those of bond angles are $0.3-0.4^{\circ}$ in the ligand, $0.2-0.3^{\circ}$ at $\mathrm{Fe}, 0.5^{\circ}$ at C in the irontricarbonyl group.


Fig.4. A parallel projection, viewed along the normal to the 'butadiene' plane. The thermal ellipsoids enclose $30 \%$ probability (Johnson, 1965). The torsional angles (Klyne \& Prelog, 1960) in the rings are marked; their e.s.d.'s (Huber, 1961) are in the range $0 \cdot 4-0 \cdot 6^{\circ}$.
fall into two classes, $\mathrm{Fe} \cdots \mathrm{M}(2,3)$ [ $1 \cdot 928$ (5) $\AA$ ] being shorter than the average $[1.955$ (3) $\AA$ ] of the two equal $\mathrm{Fe} \cdots \mathrm{M}(1,2)$ and $\mathrm{Fe} \cdots \mathrm{M}(3,4)$ distances.
On the basis of the refined atomic positions the five-membered ring is planar. However, $O(1)$ has a very large thermal-vibration component $\left(U=0.1641 \AA^{2}\right)$ normal to this ring. Two possible interpretations can be put forward: (i) either $\mathrm{O}(1)$ is continuously flipping back and forth or (ii) the five-membered ring really occurs in the envelope conformation with $\mathrm{O}(1)$ bent to one side in $50 \%$ of the molecules in the crystal and to the opposite side in the other $50 \%$. This analysis cannot distinguish between the two possibilities. Either case would account for the bond $\mathrm{C}(6)-\mathrm{O}(1)$ being considerably shorter than the mean value of $1 \cdot 426 \pm 0.005 \AA$ given by Sutton (1965).

The irontricarbonyl group has the usual approximate $C_{3 v}$ symmetry. The plane through the three carbon atoms $[\mathrm{C}(7), \mathrm{C}(8), \mathrm{C}(9)]$ of each carbonyl group is not quite parallel to the 'butadiene' plane (Table 6). The three $\mathrm{Fe}-\mathrm{C}$ bonds, as well as the three $\mathrm{C} \equiv \mathrm{O}$ bonds, are equal within experimental error and their averages are 1.803 (3) and 1.139 (4) $\AA$ respectively. From 20 bonds in related substances (see references above) the corresponding weighted averages were calculated to be 1.779 (4) and 1.147 (4) $\AA$. The agreement is very good for the $\mathrm{C} \equiv \mathrm{O}$ bonds while the $\mathrm{Fe}-\mathrm{C}$ bonds are longer in this structure. This is presumably due to the fact that
the bond lengths in the other structures were not corrected for thermal vibration. The $\mathrm{C}-\mathrm{Fe}-\mathrm{C}$ angles are of two types. The angles $\mathrm{C}(7)-\mathrm{Fe}-\mathrm{C}(9)$ and $\mathrm{C}(8)-\mathrm{Fe}-$ $\mathrm{C}(9)$ have an average value of $97.6(2)^{\circ}$ and are larger than $\mathrm{C}(7)-\mathrm{Fe}-\mathrm{C}(8)\left[92.4\right.$ (2) ${ }^{\circ}$ ]. The groups $\mathrm{Fe}-\mathrm{C}(7)-$ $\mathrm{O}(2)$ and $\mathrm{Fe}-\mathrm{C}(8)-\mathrm{O}(3)$ are linear while the $\mathrm{Fe}-\mathrm{C}(9)-$ $\mathrm{O}(4)$ angle $\left[177 \cdot 4(5)^{\circ}\right]$ is slightly smaller than $180^{\circ}$. $\mathrm{O}(4)$ is bent away from the oxygen atom in the ligand. However, the $\mathrm{O}(1) \cdots \mathrm{O}(4)$ distance of $3 \cdot 206 \AA$ does not indicate any van der Waals interaction. Fig. 4 shows how the irontricarbonyl group overlaps with the ligand.

The packing of the molecules is shown in Fig. 5. There are no intermolecular distances shorter than van der Waals contacts.

I wish to thank Professor D. Ginsburg for suggesting this problem and for supplying me with crystals. I am also indebted to Dr Maria Przybylska for her constant encouragement and interest during this work. The use of the computer programs of Ahmed, Hall, Pippy \& Huber (1966), of ORTEP (Johnson, 1965) and of TLS6 (Schomaker \& Trueblood, 1968) is gratefully acknowledged.

## References

Ahmed, F. R., Hall, S. R., Pippy, M. E. \& Huber, C. P. (1966). NRC Crystallographic Programs for the IBM/360 System. IUCr World List of Crystallographic Computer Programs. 2nd. ed. Appendix, p. 52.
Altman, J., Cohen, E., Maymon, T., Petersen, J. B., Reshef, N. \& Ginsburg, D. (1969). Tetrahedron, 25, 5115.

Bailey, N. A. \& Mason, R. (1966). Acta Cryst. 21, 652.
Beddoes, R. L., Lindley, P. F. \& Mills, O. S. (1970). Angew. Chem. 82, 293.
birch, A. J., Fitton, h., McPartlin, M. \& Mason, R. (1968). Chem. Commun. p. 531.

Birnbaum, K. B., Altman, J., Maymon, T. \& Ginsburg, D. (1970). Tetrahedron Letters, p. 2051.

Bucourt, R. \& Hainaut, D. (1965). Bull. Soc. Chim. Fr. p. 1366.

Churchile, M. R. \& Mason, R. (1967a). In Advances in Organometallic Chemistry, Edited by F. G. A. Stone \& R. West, 5, 100-105. New York: Academic Press.

Churchill, M. R. \& Mason, R. (1967b). Proc. Roy. Soc. A 301, 433.
Cromer, D. T. (1965). Acta Cryst. 18, 17.
Cromer, D. T. \& Waber, J. T. (1965). Acta Cryst. 18, 104. Cruickshank, D. W. J. (1949). Acta Cryst. 2, 65.
Dickens, D. \& Lipscomb, W. N. (1962). J. Chem. Phys. 37, 2084.

Dodge, R. P. (1964). J. Amer. Chem. Soc. 86, 5429.


Fig. 5. Stereoscopic diagram. The front, lower left corner is the origin. The directions of the axes are $a \rightarrow, c \pi$.

Green, M. L. H. (1968). In Organometallic Compounds, Vol. 2, 3rd. ed. pp. 70-74. London: Methuen.
Hamilton, W. C. (1965). Acta Cryst. 18, 502.
Hanson, H. P., Herman, F., Lea, J. D. \& Skillman, S. (1964). Acta Cryst. 17, 1040.

Huber, P. J. (1961). Helv. Chim. Acta, 44, 2032.
Johnson, C. K. (1965). ORTEP. ORNL-3794, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
Klyne, W. \& Prelog, V. (1960). Experientia, 16, 521.
Paul, I. C., Johnson, S. M., Paquette, L. A., Barrett, J. H., Haluska, R. J. (1968). J. Amer. Chem. Soc. 90, 5023.

Robson, A. \& Truter, M. R. (1968). J. Chem. Soc. (A), p. 794.

Schomaker, V. \& Trueblood, K. N. (1968). Acta Cryst. B24, 63.
Smith, D. L. \& Dahl, L. F. (1962). J. Amer. Chem. Soc. 84, 1743.

Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3175.

Sutton, L. E. (1965). Tables of Interatomic Distances and Configurations in Molecules and Ions. Special Publication No. 18. London: The Chemical Society.

# The Crystal Structure of the High-Temperature Modification of Potassium Pentaborate 

By J. Krogh-Moe<br>Chemistry Department, University of Trondheim, Trondheim, Norway

(Received 10 February 1971)


#### Abstract

The high-temperature modification of potassium pentaborate, $\alpha-\mathrm{K}_{2} \mathrm{O} .5 \mathrm{~B}_{2} \mathrm{O}_{3}$, is orthorhombic with 4 formula units in the unit cell of dimensions $a=8 \cdot 383 \pm 0 \cdot 001, b=8 \cdot 418 \pm 0 \cdot 001, c=21 \cdot 540 \pm 0 \cdot 003 \AA$. The space group is $P b c a$. The calculated density of the phase, $1.93 \mathrm{~g} . \mathrm{cm}^{-3}$, is much less than the density of the low-temperature modification, $2 \cdot 29 \mathrm{~g} . \mathrm{cm}^{-3}$, for which the structure was reported previously. The structure in this study was determined and refined by least-squares methods to an $R$ value of 0.062 with three-dimensional diffractometer data. The weighted $R$ value was 0.038 . The structure contains the characteristic double-ring pentaborate groups connected in two separate interpenetrating networks. The bond lengths of the boron-oxygen bond in the planar $\mathrm{BO}_{3}$ triangle are about $1.320 \AA$ if the adjacent bond to the oxygen atom is from a fourfold coordinated boron atom, and $1.385 \AA$ if the adjacent bond to the oxygen atom is from a threefold coordinated boron atom. The standard deviation for the boronoxygen bond is $0.006 \AA$. The potassium ion is surrounded by 8 close oxygen neighbours at distances ranging from 2.770 to $3.139 \AA$.


## Introduction

The crystal structure of the low-temperature modification of potassium pentaborate, $\beta-\mathrm{K}_{2} \mathrm{O} .5 \mathrm{~B}_{2} \mathrm{O}_{3}$, was determined previously by Krogh-Moe (1959a, 1965). Unit-cell data for the high-temperature modification were also reported (Krogh-Moe, 1959b). Because of the great difference in density of these two phases (the ratio of the densities is $\varrho_{\beta} / \varrho_{x}=1 \cdot 19$ ), it was assumed that there might be interesting structural differences between the two phases; therefore, a complete structure determination of the high-temperature modification was undertaken.

## Experimental

Crystalline $\alpha-\mathrm{K}_{2} \mathrm{O} .5 \mathrm{~B}_{2} \mathrm{O}_{3}$ was prepared by fusing potassium carbonate with boric acid in the stoichiometric ratio in a platinum crucible and crystallizing the mixture at $760^{\circ} \mathrm{C}$. A single crystal in the shape of a prism bounded by the (100), (010), and (001) faces was used for collecting data. Dimensions of the crystal were $0.0090 \times 0.0095 \times 0.0080 \mathrm{~cm}$ along the $a, b$, and $c$ axes respectively; the $a$ axis was aligned with the goniometer head axis. Data were collected with an on-line

Picker single-crystal automatic diffractometer. Unitcell dimensions and standard errors $a=8.383 \pm 0 \cdot 001$, $b=8.418 \pm 0.001, c=21.540 \pm 0.003 \AA$ were obtained by the method of least-squares from angle data recorded at $22^{\circ} \mathrm{C}$ for 12 high-angle reflections (based on the wavelength $1 \cdot 5405 \AA$ for $\mathrm{Cu} K \alpha_{1}$. For four formula units of $\mathrm{K}_{2} \mathrm{O} .5 \mathrm{~B}_{2} \mathrm{O}_{3}$ in the cell, the calculated density is $1.93 \mathrm{~g} . \mathrm{cm}^{-3}$. Krogh-Moe (1959b) obtained an experimental value of $1.95 \mathrm{~g} . \mathrm{cm}^{-3}$ for this phase.

## Structure determination

The systematic extinction corresponds to that of space group Pbca. The experimental intensities were converted in the usual manner to observed structure factors. No correction for absorption was made. With a linear absorption coefficient of $62.9 \mathrm{~cm}^{-1}$, the absorption error in the relative structure factors from a crystal of the above mentioned size and shape will not be large. (A sphere of about the same size would require a maximum relative correction of $2 \%$ in the intensities between the high-angle and low-angle limit of the observations.) Preliminary signs for the largest structure factors were determined by the symbolic-


[^0]:    * Issued as N.R.C.C. No. 12293.
    $\dagger$ National Research Council Postdoctorate Fellow 19681970.

